中子星的特征和分类

2016-05-23 09:04 作者:admin 来源:网络

脉冲星

中子星的表面温度约为一百一十万度,辐射χ射线、γ射线和可见光。中子星有极强的磁场,它使中子星沿着磁极方向发射束状无线电波(射电波)。中子星自转非常快,能达到每秒几百转。中子星的磁极与两极通常不吻合,所以如果中子星的磁极恰好朝向地球,那么随着自转,中子星发出的射电波束就会像一座旋转的灯塔那样一次次扫过地球,形成射电脉冲。人们又称这样的天体为“脉冲星”。
 

史瓦西半径

超新星爆发后,如果星核的质量超过了太阳质量的两至三倍,那它将继续坍缩,最后成为一个体积无限小而密度无穷大的奇点,从人们的视线中消失。围绕着这个奇点的是一个“无法返回”的区域,这个区域的边界称为“视野”或“事件地平”,区域的半径叫做“史瓦西半径”。任何进入这个区域的物质,包括光线,都无法摆脱这个奇点的巨大引力而逃逸,它们就像掉进了一个无底深渊,永远不可能返回。


磁星

“磁星”(Magnetar)是中子星的一种,它们均拥有极强的磁场,透过其产生的衰变,使之能源源不绝地释出高能量电磁辐射,以X射线及γ射线为主。磁星的理论于1992年由科学家罗伯特·邓肯(Robert Duncan)及克里斯托佛·汤普森(Christopher Thompson)首先提出,在其后几年间,这个假设得到广泛接纳,去解释软γ射线复发源(soft gamma repeater)及不规则X射线脉冲星(anomalous X-ray pulsar)等可观测天体。


当黑洞与中子星相遇

中子星和黑洞都是宇宙中质量和引力极其恐怖的天体。但当它们相遇时会发生什么样的惊人故事呢?在两者相距200~300亿公里时,中子星表层物质发生不稳定,磁场有明显的异常波动。当两者相距达到100亿公里时,中子星的外物质便会飞逸而出,并在黑洞周边高速环绕,之后中子星便向黑洞“奇点”做螺旋形下坠运动。当到50亿公里时,黑洞和中子星的磁场剧烈碰撞,并放出大量电子和光,之后中子星的能量便会慢慢消耗,而后被黑洞吞没,其时间依据中子星的体积而论,但一般不会超过6个小时。